合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(二)
> 表面張力儀在藥物研發(fā)領(lǐng)域的應(yīng)用【案例】
> 熱力學(xué)模型計算MgO-B2O3-SiO2-CaOAl2O3富硼渣表面張力(一)
> 什么叫界面?基于動態(tài)懸滴表征的界面性質(zhì)精確測定方法
> ?氧化石墨烯基復(fù)合膜材料的制備方法、應(yīng)用開發(fā)及前景
> 含氟表面活性劑的合成與應(yīng)用研究
> 基于LB膜技術(shù)制備二氧化硅二維光子晶體薄膜的方法
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應(yīng)用性能研究(一)
> 納米乳液的類型、制備、粒徑分布、界/表面張力、接觸角和Zeta電位
> 油脂不飽和度對于蛋白質(zhì)界面特性與乳液穩(wěn)定性的影響
推薦新聞Info
-
> 電弧增材制造過程中熔池的形成與演變受哪些因素影響?
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——結(jié)果與討論、結(jié)論
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——摘要、實驗部分
> 硝化纖維素塑化效果與其表面張力的變化規(guī)律
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——討論、結(jié)論
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——結(jié)果與分析
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——材料與方法
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——摘要、前言
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(三)
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(二)
電弧增材制造過程中熔池的形成與演變受哪些因素影響?
來源:材料導(dǎo)報 瀏覽 15 次 發(fā)布時間:2024-12-27
電弧增材制造過程涉及絲材的送入和熔化,熔融金屬向熔池的過渡,熔池中液態(tài)金屬的對流、凝固和成形。缺陷的形成與電弧增材制造過程中發(fā)生的復(fù)雜多物理場現(xiàn)象密切相關(guān)。因此,需要借助高保真數(shù)值模擬技術(shù)來深入理解這些物理現(xiàn)象,并將其作為優(yōu)化工藝條件、制造高質(zhì)量產(chǎn)品的理論依據(jù)。本文綜述了電弧增材制造傳熱傳質(zhì)數(shù)值模擬涉及的關(guān)鍵技術(shù),并對未來研究方向進行了展望:首先,介紹了幾種典型的熱源模型,鑒于電弧增材制造過程中熔池的形成與演變是多種驅(qū)動力共同作用的結(jié)果,分析了浮力、電磁力、表面張力、電弧壓力、電弧剪應(yīng)力模型對流體流動和熔池表面變形的影響。
熔池行為是多種驅(qū)動力共同作用的結(jié)果,重力、浮力、電磁力、表面張力、電弧壓力、電弧剪應(yīng)力等驅(qū)動力對流體流動和熔池表面變形均有影響。由于液態(tài)金屬在較高溫度下的密度較低,金屬內(nèi)部各部分之間存在密度差異。因此,在熔池中心產(chǎn)生向上的浮力,液態(tài)金屬由底部流向頂部,到達上表面后流向熔池邊緣。熔池中心的溫度高于熔池邊緣的溫度,一般金屬熔液表面張力溫度梯度為負值,會形成熔池中心的高溫液態(tài)金屬流向熔池邊緣溫度較低區(qū)域的流動模式,距離中心越遠,液態(tài)金屬流速越快。受表面張力驅(qū)動的Marangoni力的影響,熔池的形狀寬且淺。液態(tài)熔池受到感應(yīng)磁場的影響,會引起液態(tài)金屬的對流流動。在熔池表面,液態(tài)金屬由熔池邊緣向熔池中心流動。
如圖1a、b所示,沿x軸和y軸方向的電磁力從圓弧外圍指向中心,在距圓弧中心處達到峰值。沿z軸方向的電磁力垂直向下,在工件表面達到峰值,如圖1c所示。在熔池內(nèi)部,液態(tài)金屬由熔池上部沿中心線向下流動,再沿液固界面流向熔池表面,最大流速出現(xiàn)在熔池中間區(qū)域,熔池底部產(chǎn)生凸起,熔池隨之變深,這與大多數(shù)研究的結(jié)果一致;在熔滴內(nèi)部,Cadiou等研究發(fā)現(xiàn)電磁力促成了熔滴的扁平化,這導(dǎo)致沿液橋的表面張力增加,在熔滴從焊絲上分離之前,表面張力占主導(dǎo)地位,在脈沖階段,電磁力沿液橋強烈增加,導(dǎo)致液滴脫離,如圖1d所示。
圖1電磁力分布:(a—c)熔池內(nèi)部笛卡爾坐標系x、y、z方向;(d)熔滴內(nèi)部
電弧壓力是形成熔池凹陷區(qū)的驅(qū)動力。熔池中心表面的液態(tài)金屬受到較大的壓力,向周圍移動。液態(tài)金屬在熔池中心區(qū)域流速最大,而越靠近熔池底部流速越小。這種流動模式允許更多的熱量從熱源傳遞到熔池底部,從而導(dǎo)致深度滲透。如圖2所示,液態(tài)金屬在電弧壓力的驅(qū)動下被推到熔池的后部,并在凝固時形成冠狀。
圖2電弧壓力作用下熔池的形貌
電弧剪切應(yīng)力的存在是由于電弧等離子體中既有動能又有動量。當電弧等離子體從熔池中心撞擊熔池時,熔池表面會受到向外的剪切應(yīng)力。類似于表面張力,熔池表面的剪切應(yīng)力促使液態(tài)金屬向外流動。它通常在靜止焊接或低速焊接過程中呈軸對稱分布,如圖3所示,從電弧中心到邊界,電弧剪切應(yīng)力先急劇增加后減小。在高焊接速度下,電弧沿焊接方向變形,產(chǎn)生非軸對稱分布的電弧剪切應(yīng)力,此時可以假設(shè)電弧剪切應(yīng)力分布在一個雙橢圓區(qū)域。
圖3電弧剪切應(yīng)力分布示意圖
現(xiàn)階段通常使用一個或多個經(jīng)驗公式來模擬熔池驅(qū)動力,這種方法簡單易用,可以快速計算出驅(qū)動力的變化情況。然而,在模擬過程中,需要進行一些假設(shè)和約定,這可能導(dǎo)致模擬結(jié)果的不精確或不可靠;其次,熔池驅(qū)動力模型存在一定的簡化和近似,可能會忽略一些細節(jié)和復(fù)雜的物理現(xiàn)象,這也會對模擬結(jié)果產(chǎn)生影響;此外,在模擬過程中需要輸入大量的參數(shù)和設(shè)置,如果這些參數(shù)和設(shè)置不正確,將會對模擬結(jié)果產(chǎn)生影響。
本文綜述了WAAM傳熱傳質(zhì)數(shù)值模擬涉及的關(guān)鍵技術(shù)。在WAAM過程中,熔池的形成與演變是多種驅(qū)動力共同作用的結(jié)果,其中,電磁力、表面張力、電弧壓力、電弧剪應(yīng)力等驅(qū)動力模型以源項的形式添加到動量方程中。考慮到電弧的變形,部分學(xué)者還建立了非軸對稱分布的驅(qū)動力模型。速度入口填充液態(tài)金屬的過渡模型一般用于GMAW和CMT熱源類型。將過渡金屬假設(shè)為球狀的方法操作簡單,容易收斂,被大多數(shù)模型所采納。固態(tài)金屬焊絲模型相對復(fù)雜,能夠預(yù)測不同的過渡方式和詳細的過渡動態(tài)。建模域通常被視為兩相流問題,其中與VOF法相比,LS法能預(yù)測更銳利的界面。但是,LS法不能嚴格保證質(zhì)量守恒,而VOF法可以更好地保證質(zhì)量守恒。因此,VOF法得到了更廣泛的應(yīng)用。上述開發(fā)的模型能夠模擬具有動態(tài)自由表面的熔池,但是還存在一些局限,未來發(fā)展前沿涉及:
(1)提高精度和可靠性。由于這些模型不可避免地基于一些假設(shè)并進行簡化,例如,工藝參數(shù)對孔隙、咬邊等缺陷的影響經(jīng)常被忽略,在數(shù)值建模中,必須考慮這些現(xiàn)象,以更全面地預(yù)測熔池的動力學(xué)和形態(tài)。此外,為了提高對模擬結(jié)果的評估準確性,需要加強驗證模擬的實驗數(shù)據(jù)和方法的準確性。
(2)探索熱學(xué)、固體力學(xué)和冶金現(xiàn)象耦合的多尺度模擬。
增材制造工藝涉及廣泛的長度和時間尺度,從熔池的動態(tài)變化到最終零件的微觀結(jié)構(gòu)。開發(fā)多尺度的仿真工具有助于全面理解成形過程,并預(yù)測制造的零件的力學(xué)性能和微觀結(jié)構(gòu)。值得注意的是,多尺度模型可能更為復(fù)雜。
(3)結(jié)合機器學(xué)習與人工智能技術(shù)。隨著模型復(fù)雜程度的提升,仿真時間和計算量迅速增加。將數(shù)值計算與機器學(xué)習相結(jié)合,充分挖掘計算數(shù)據(jù)意義的同時提高計算速率,為突破當前局限提供了一種可行的技術(shù)手段。