合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 提高聚乙烯材料表面張力的處理方法
> 液態(tài)表面張力儀表面結(jié)構(gòu)、工作原理及技術(shù)參數(shù)
> 草甘膦藥液表面張力變化對其物理性狀與生物活性的影響
> 無機(jī)粒子對TPAE界面張力、發(fā)泡、抗收縮行為的影響(四)
> 拉筒法和靜滴法測定連鑄結(jié)晶器保護(hù)渣表面張力(二)
> 不同溫度下水波波速和表面張力系數(shù)的關(guān)系與計(jì)算方法【實(shí)驗(yàn)】(一)
> 礦井瓦斯防治:表面活性劑溶液表面張力、泡沫特性及對甲烷緩釋效應(yīng)(一)
> 基于深度神經(jīng)網(wǎng)絡(luò)模型分析明膠溶液荷電量與表面張力之間的關(guān)系(一)
> 如何改善水性涂料的耐水性?
> 傳統(tǒng)的表面張力儀的功能簡介
推薦新聞Info
-
> 活性低聚表面活性劑促進(jìn)水滴在疏水表面的鋪展
> 表面活性劑性能形成、HLB值計(jì)算、關(guān)鍵作用及其應(yīng)用
> 鋰電池隔膜粘接劑組合物稀釋液表面張力測試及影響
> 辛酸異戊酯替代白油制備壓裂液用增稠劑可行性研究
> 芬蘭Kibron表面張力儀精準(zhǔn)測量不同微米尺度下異辛烷的表面張力
> 磁場強(qiáng)度和磁化時(shí)長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(三)
> 磁場強(qiáng)度和磁化時(shí)長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(二)
> 磁場強(qiáng)度和磁化時(shí)長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(一)
> 表面張力的球泡運(yùn)動(dòng)的理論解研究
> 改性環(huán)氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(三)
稠油冷降黏劑&采凍膠分散體調(diào)驅(qū)復(fù)配體系對其動(dòng)態(tài)界面張力的影響
來源: 石油與天然氣化工 瀏覽 388 次 發(fā)布時(shí)間:2024-06-28
目的旨在有效解決稠油化學(xué)冷采過程中降黏劑竄流現(xiàn)象嚴(yán)重、油藏動(dòng)用效率低的問題,支撐稠油綠色高效開發(fā)。方法基于稠油冷采降黏劑高效降黏洗油與凍膠分散體調(diào)剖劑儲(chǔ)層調(diào)控的協(xié)同效應(yīng),采用復(fù)配方式構(gòu)建了稠油冷采用凍膠分散體調(diào)驅(qū)體系,測試其基本性能,并使用界面擴(kuò)張流變儀以及流變儀,考查了體系的界面流變特性和剪切應(yīng)力特性。結(jié)果體系由質(zhì)量分?jǐn)?shù)為0.06%~0.12%的凍膠分散體和質(zhì)量分?jǐn)?shù)為0.05%~0.15%的降黏劑組成,為粒徑均一的低黏流體,能夠降低界面張力并乳化稠油,降黏率達(dá)到95%以上。體系中降黏劑在油水界面的吸附行為決定了體系的乳化降黏能力,降黏劑通過吸附在凍膠分散體的表面提高了體系的聚結(jié)穩(wěn)定性,并考查了組分含量及油藏條件對以上過程的影響。結(jié)論構(gòu)建了一種兼具儲(chǔ)層調(diào)控和高效降黏能力稠油冷采用凍膠分散體調(diào)驅(qū)體系,探明了體系中各組分間的相互作用機(jī)制,為稠油化學(xué)冷采提供了技術(shù)支持。
實(shí)驗(yàn)部分
試劑與儀器
實(shí)驗(yàn)所用材料:凍膠分散體,實(shí)驗(yàn)室自制[18];稠油冷采降黏劑,上海諾頌實(shí)業(yè)有限公司;實(shí)驗(yàn)用模擬地層水礦化度8 000 mg/L(NaCl與CaCl2質(zhì)量比為9∶1);所用稠油樣品為勝利油田河口采油廠的特超稠油,油藏溫度為50℃,樣品基礎(chǔ)性質(zhì)及組成見表1和表2。
表1稠油樣品基礎(chǔ)性質(zhì)
實(shí)驗(yàn)所用儀器:激光粒度分布儀(Bettersize2000,丹東百特儀器有限公司,中國);旋轉(zhuǎn)黏度計(jì)(DV2T,BROOKFIELD,美國);旋轉(zhuǎn)滴界面張力儀(芬蘭kibron);界面擴(kuò)張流變儀(Tracker,TECLIS Scientific,法國);高溫高壓流變儀(HAAKE MARS 60,Thermo Fisher Scientific,美國)等。
實(shí)驗(yàn)方法
基本性能測試
使用激光粒度分布儀對稠油冷采用凍膠分散體調(diào)驅(qū)體系的粒徑分布進(jìn)行測定,使用旋轉(zhuǎn)滴界面張力儀測定體系與稠油界面張力,使用旋轉(zhuǎn)黏度計(jì)測量體系黏度及稠油乳液黏度。將不同質(zhì)量分?jǐn)?shù)的體系與稠油樣品進(jìn)行機(jī)械攪拌獲得稠油乳液并測定其黏度,計(jì)算乳化降黏率。
界面流變特性測試
使用界面擴(kuò)張流變儀,通過懸滴法對液滴的周期性擾動(dòng),利用滴外形分析方法測試界面張力響應(yīng),研究界面層分子吸附與脫附過程,并對體系動(dòng)態(tài)界面張力(固定振蕩頻率為0.5 Hz)和不同振蕩頻率下的界面擴(kuò)散模量進(jìn)行測試,測試溫度為50℃。界面擴(kuò)張模量定義為界面張力變化與界面面積相對變化的比值,見式(1)。
圖1為在不同降黏劑質(zhì)量分?jǐn)?shù)下,體系油水界面張力的變化情況。從圖1可知,在降黏劑質(zhì)量分?jǐn)?shù)為0.05%~0.10%時(shí),界面張力隨質(zhì)量分?jǐn)?shù)增加而降低。當(dāng)降黏劑質(zhì)量分?jǐn)?shù)超過0.10%時(shí),界面張力開始上升。在低質(zhì)量分?jǐn)?shù)下,降黏劑在油水界面上形成吸附膜,降低界面張力。當(dāng)降黏劑質(zhì)量分?jǐn)?shù)超過臨界膠束含量后,降黏劑在界面聚集數(shù)量增加,吸附層排布更不規(guī)則,導(dǎo)致界面張力升高。
圖2為體系組成對動(dòng)態(tài)界面張力及界面擴(kuò)張模量的影響。圖2(a)和圖2(c)呈現(xiàn)了凍膠分散體質(zhì)量分?jǐn)?shù)對界面流變性質(zhì)的影響。其中,降黏劑質(zhì)量分?jǐn)?shù)保持為0.10%。隨著振蕩時(shí)間的增加,體系界面張力逐漸趨于穩(wěn)定。凍膠分散體在高質(zhì)量分?jǐn)?shù)時(shí),穩(wěn)定界面張力明顯更高,這是由于在降黏劑質(zhì)量分?jǐn)?shù)不變時(shí),油水界面上降黏劑分子數(shù)量相對固定凍膠分散體在油水界面的吸附量隨質(zhì)量分?jǐn)?shù)增大逐漸增加,擠占了降黏劑分子在界面吸附位置。同時(shí),由于體系黏度上升,降低了降黏劑向界面擴(kuò)散的速度,導(dǎo)致界面張力增加。體系黏度提高,增加了動(dòng)態(tài)擴(kuò)張模量,在高質(zhì)量分?jǐn)?shù)凍膠分散體條件下,黏彈性提升效更加顯著。
圖2(b)和圖2(d)為降黏劑質(zhì)量分?jǐn)?shù)對界面流變性質(zhì)的影響,凍膠分散體質(zhì)量分?jǐn)?shù)固定為0.06%。在降黏劑質(zhì)量分?jǐn)?shù)為0.05%~0.10%的范圍內(nèi),隨著降黏劑質(zhì)量分?jǐn)?shù)的增加,動(dòng)態(tài)界面張力穩(wěn)定值下降。但當(dāng)質(zhì)量分?jǐn)?shù)超過0.10%時(shí),隨著質(zhì)量分?jǐn)?shù)的增加,動(dòng)態(tài)界面張力穩(wěn)定值增大。體系的擴(kuò)張模量變化趨勢與動(dòng)態(tài)界面張力相同。在低質(zhì)量分?jǐn)?shù)情況下,隨著降黏劑分子數(shù)量的增多,逐漸在油水界面形成有序的吸附層,使得界面膜的強(qiáng)度不斷增大,動(dòng)態(tài)界面張力降低,界面擴(kuò)張模量增大。而在高質(zhì)量分?jǐn)?shù)下,降黏劑在界面層吸附飽和后,質(zhì)量分?jǐn)?shù)繼續(xù)增加會(huì)增強(qiáng)空間位阻效應(yīng),使降黏劑的部分親水基團(tuán)從水相中逸出,形成膠束聚集體,對吸附膜的強(qiáng)度產(chǎn)生負(fù)面影響,使得界面擴(kuò)張模量減低。因此,當(dāng)降黏劑質(zhì)量分?jǐn)?shù)為0.10%時(shí),體系在稠油界面層形成的界面膜最為穩(wěn)定,體系的乳化降黏能力最強(qiáng)。
圖3為油藏條件對動(dòng)態(tài)界面張力及界面擴(kuò)張模量的影響。采用不同礦化度模擬水配制體系(0.06%(w)凍膠分散體+0.10%(w)降黏劑),在50℃老化10天。圖3(a)和圖3(c)呈現(xiàn)了礦化度對體系界面流變性質(zhì)的影響。從圖3可知,隨著礦化度的提高,老化后體系的動(dòng)態(tài)界面張力穩(wěn)定值從0.127 mN/m增至0.356 mN/m。降黏劑帶有磺酸鹽基團(tuán),有較強(qiáng)的耐溫耐鹽能力,因此界面張力的提升幅度有限。此外,體系的界面擴(kuò)張模量隨礦化度的增大而減低,這是由于地層水陽離子會(huì)對凍膠分散體之間的擴(kuò)散雙電層產(chǎn)生壓縮作用,減小凍膠分散體表面負(fù)電量,降低其分散穩(wěn)定性,體系黏度隨之下降。
將體系(0.06%(w)凍膠分散體+0.10%(w)降黏劑)置于50℃條件下老化,模擬長期的調(diào)驅(qū)過程。圖3(b)和圖3(d)為老化時(shí)間對體系界面流變性質(zhì)的影響。從圖3可知,隨著老化時(shí)間的增加,體系的動(dòng)態(tài)界面張力穩(wěn)定值增加,同時(shí)界面擴(kuò)張模量減小。在老化過程中,降黏劑分子的界面活性逐漸減弱,導(dǎo)致降黏劑的有效吸附含量降低,使得動(dòng)態(tài)界面張力增加。此外,由于老化后凍膠分散體聚結(jié)沉降在底部,體系黏度降低,降低了界面擴(kuò)張模量??傮w來看,老化后的體系對稠油的乳化能力略有下降。
結(jié)論
構(gòu)建了一種兼具儲(chǔ)層調(diào)控和高效降黏能力的稠油冷采用凍膠分散體調(diào)驅(qū)體系,初始粒徑中值為1.03μm,體系黏度為10 mPa·s,能夠降低油水界面張力至10-1 mN/m,對稠油樣品的乳化降黏率能達(dá)到95%以上。
作者簡介:楊寧,1997年生,中國石油大學(xué)(華東)油氣田開發(fā)專業(yè)博士研究生,主要從事油田化學(xué)法提高采收率方向的研究。E-mail:yangning0332 163.com.