合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 天宮課堂航天員液橋演示實驗展示表面張力的神奇作用
> 酯功能化的雙子表面活性劑與血紅蛋白的結(jié)合——材料和方法
> 細胞表面PH對于生物多肽生物活化的潛在重要性——摘要、介紹、材料和方法
> 乳化劑親水性和親油性是不平衡的
> 水性油墨的質(zhì)量控制要點及使用要求
> 分子表面包裝對于磷脂單分子層膜中的錨定蛋白中酶活性的調(diào)制作用的影響——摘要、介紹
> α-環(huán)糊精對非離子表面活性劑和兩性離子表面活性劑混合體系的界面及自組裝性質(zhì)——結(jié)論
> 復(fù)合型表面活性劑對農(nóng)藥水分散粒劑靜/動態(tài)表面張力變化規(guī)律研究
> ?合成血液表面張力的影響因素
> 在水中有沒有可能呈現(xiàn)出多邊形的油滴呢?
推薦新聞Info
-
> 不動桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(三)
> 不動桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(二)
> 不動桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(一)
> 阿洛酮糖可提高塔塔粉溶液的表面張力,打發(fā)的蛋清更白泡沫更穩(wěn)定
> 聚氧乙烯鏈長度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(四)
> 聚氧乙烯鏈長度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(三)
> 聚氧乙烯鏈長度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(二)
> 聚氧乙烯鏈長度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(一)
> 飽和腰果酚聚氧乙烯醚磺酸鹽動態(tài)界面張力測定【實驗步驟及結(jié)果】
> 最大拉桿法的基本原理、實驗步驟、影響因素及其在測定溶液表面張力中的應(yīng)用
泡沫的微觀結(jié)構(gòu)及演變動力學(xué)
來源:知乎 阿黃sweetgirl 瀏覽 1016 次 發(fā)布時間:2021-08-28
前面有一篇短文中介紹了水中的自由氣泡的演變過程。然而,在實際生活中,我們見到和經(jīng)常使用的卻是大量氣泡組成的泡沫。本文介紹一下泡沫的微觀結(jié)構(gòu)靜力學(xué)及其演變過程分析。
泡沫一般結(jié)構(gòu)如圖1所示,由于浮力作用,大量的氣泡漂浮在液體的表層,從上往下含有的氣泡的體積分?jǐn)?shù)依次減小。在泡沫的研究中,把液體體積含量極少(通常少于1%)的泡沫成為干泡沫,把含量介于1%到約30%左右的泡沫成為濕泡沫。對于氣泡液體,幾乎所有的氣泡可以保持為球形,不用考慮氣泡之間直接接觸的氣泡膜問題,這不屬于泡沫物理學(xué)研究的范疇。如圖1所示,泡沫的結(jié)構(gòu)尺度跨越10個數(shù)量級,從宏觀泡沫的演變規(guī)律,到微觀泡沫界面的穩(wěn)定機制,對于泡沫的研究橫跨了物理,材料,界面化學(xué)等多個學(xué)科。
圖1.不同尺度下的泡沫結(jié)構(gòu)及穩(wěn)定機制(Ref 1)(a)整個泡沫結(jié)構(gòu),尺度為0.01 m至1 m。(b)干泡沫的放大部分,尺度為0.1 mm至1 cm。(c)液體通道,也叫Plateau邊界,尺度為1 um至0.1 mm以及肥皂泡膜,尺度為10 nm到1 um。(d)氣液界面的分子層結(jié)構(gòu),尺度為0.1 nm到10 nm。e-f)氣泡膜在界面靜電力排斥作用即楔裂壓(disjoining pressure)的作用下而穩(wěn)定存在。
(1)泡沫的結(jié)構(gòu)規(guī)律
圖2 Plateau及其干泡沫靜態(tài)結(jié)構(gòu)力學(xué)三定律(Ref 1)
泡沫物理學(xué)集中于研究泡沫的結(jié)構(gòu)、靜力學(xué)、動態(tài)演變及排液等內(nèi)容。它是一個十分古老的學(xué)科,由比利時物理學(xué)家Plateau在19世紀(jì)中葉開創(chuàng)(圖2a)。Plateau在數(shù)十年的失明的時光里,依舊通過指導(dǎo)他侄子做試驗,堅持研究肥皂泡薄膜的幾何形態(tài)及其背后隱藏的力學(xué)規(guī)律。1873年,他和侄子把自己的實驗現(xiàn)象和分析結(jié)果做了系統(tǒng)整理,以法文發(fā)表,從此把對泡沫結(jié)構(gòu)的研究由定性印象推到了量化階段,開創(chuàng)了泡沫物理學(xué)(Ref 2)。在泡沫靜力學(xué)方面,Plateau的主要貢獻在于其提出了干泡沫的靜態(tài)結(jié)構(gòu)力學(xué)的三定律,它是后續(xù)泡沫研究的基石:
1)膜力學(xué)平衡:肥皂膜是光滑的,它的曲率半徑是處處相等的,其大小可以用Laplace方程去計算。對于2維泡沫,每條氣泡邊界都是圓弧的一部分(圖2b);
2)邊力學(xué)平衡:三個肥皂膜相互接觸總是形成三條邊,且任意三條邊的夾角必須為120°(圖2b),此時力平衡并且體系能量最低。
3)頂點力學(xué)平衡:當(dāng)四條邊在空間形成一個頂點時,此頂點處的四條邊任意兩條的夾角都為109.5°,只有這個角度才能使膜以120°角互相連接達到力平衡(圖2c)。
(2)泡沫的演變
Plateau的泡沫結(jié)構(gòu)力學(xué)三定律對于后續(xù)泡沫的研究具有重要的意義。它直接引出了一系列有關(guān)氣泡的推論。
比如,依據(jù)Plateau第一定律,可以推出,相鄰三個相互接觸的氣泡的三條邊界上的曲率之和為零(Curvature sum rule)。其中最重要地是1952年von Neumann利用它推導(dǎo)出了二維泡沫的演變方程(Ref 3)。
推導(dǎo)二維泡沫的演變方程需要用到幾何荷數(shù)(Geometry charge)的概念。下面我們首先介紹一下幾何荷數(shù)的定義。
假設(shè)二維干泡沫中的任一氣泡如圖3b所示,氣泡的邊數(shù)為n,從a點開始,再回到a的邊長分別標(biāo)記為l1到ln,每邊所對應(yīng)的曲率為k1到kn(Plateau第一定律)?,F(xiàn)在假設(shè)有一點從a點沿著邊向b運動,到b點時,所走的路徑為l1,轉(zhuǎn)動的角度為這條邊所對應(yīng)的圓心角(向外為正,向內(nèi)為負值),為k1*l1。此時要想繼續(xù)沿著邊運動,需要向內(nèi)轉(zhuǎn)動π/3角度(根據(jù)Plateau第二定律),如圖3b所示。轉(zhuǎn)動后繼續(xù)運動,直到到達原來的點a。此過程,n條邊總共在頂點處轉(zhuǎn)動的角度為nπ/3,在邊上轉(zhuǎn)動的角度為
此點的運動方向變化總共為2π,可建立關(guān)系:
則幾何荷數(shù)q的定義為:
圖3 Von Neumann及二維干泡沫演化規(guī)律(Ref 1)
幾何荷數(shù)的含義即是每邊所對應(yīng)的圓心角之和,其中對于氣泡而言往外凸起的邊為正值,往里凹下的邊其圓心角為負值。幾何荷數(shù)能夠反應(yīng)出氣泡的平均凹凸程度,是對氣泡平均形貌的一個表征。通過公式可以看出,邊長大于6的氣泡平均是凹下的,邊長等于6的氣泡平均是平的,而變長小于6的氣泡,平均起來是凸起的,如圖3c所示。
下面我們推導(dǎo)二維泡沫的演變方程,由于任一氣泡跟周圍氣泡的氣體交換都是通過氣泡邊界進行的,則氣泡體積(二維氣泡用面積表示)隨時間的變化率跟邊界長度和邊界上的壓強差都有關(guān)系,可以表示為
式中λ為氣體傳輸系數(shù),根據(jù)Laplace方程可得
結(jié)合上式及上面q的推導(dǎo)過程公式,可得
二維泡沫的演變方程表明,氣泡的變化只和其邊的個數(shù)有關(guān),對于邊長大于6的氣泡,隨著演化體積會增大,邊長等于6的氣泡,其體積保持不變。而對于邊長小于6的氣泡,其體積會逐漸變小。注意,這兒體積保持不變,不代表氣泡不與外界發(fā)生氣體傳輸,只是表示進入氣泡和出去氣泡的體積是相等的,總體顯示體積顯示不變,也不代表氣泡的邊界不發(fā)生移動。
Von Neumann的二維演變方程的著名及其重要性是它不單單適用于二維泡沫,凡是具有網(wǎng)格結(jié)構(gòu)的二維體系,界面移動受界面張力調(diào)控,其速率受界面曲率調(diào)控的情形都可以用這個方程去表達。這種情形在自然界中是十分普遍的,比如如水上面油脂分子層的演化、熔化時晶界的變化、冰晶的生長等(Ref 5,Ref 6)。
自從Von Neumann推出了二維泡沫的演變方程以來,人們一直希望能推導(dǎo)出三維泡沫的演變方程,直到50多年后的2007年,美國葉史瓦大學(xué)MacPherson等在Nature上發(fā)表了一篇題為“把von Neumann方程拓展到三維微結(jié)構(gòu)粗化的研究”(The von Neumann relation generalized to coarsening of three-dimensional microstructures)的論文,完成了對三維泡沫體系演變方程的推導(dǎo)(Ref 7)。之后,加利福尼亞大學(xué)的Saye等于2013年在Science上發(fā)表論文,從模擬上實現(xiàn)了三維泡沫的結(jié)構(gòu)重排、排液、破裂等一系列過程(圖4),在泡沫演變歷史上具有劃時代的意義(Ref 4)。至此,人們對泡沫演變的規(guī)律得到了充分的認(rèn)識。
圖4目前對三維干泡沫演變的模擬研究65
Ref 1:I.Cantat,S.et al.Foams:Structure and Dynamics.Oxford University Press,Oxford,(20
Ref 1:I.Cantat,S.et al.Foams:Structure and Dynamics.Oxford University Press,Oxford,(2013).
Ref2:孫其誠&譚靚慧.泡沫物理學(xué)史拾萃.物理37,473-481(2008).
Ref3:Neumann,J.v.in Metal Interfaces(ed.Herring,C.),108-110(Americal Society for Metals,Cleveland,1952).
Ref 4:Saye,R.I.&Sethian,a.J.A.Multiscale Modeling of Membrane Rearrangement,Drainage,and Rupture in Evolving Foams.Science 340,720(2013).
Ref 5:Stavans,J.The evolution of cellular structures.Rep.Prog.Phys.56,733-789(1993).
Ref 6 Glazier,J.A.&Weaire,D.the kinetics of cellular patterns.J.Phys.:Condens.Matter 4,1867-1894(1992).
Ref 7:MacPherson,R.D.&Srolovitz,D.J.The von Neumann relation generalized to coarsening of three-dimensional microstructures.Nature 446,1053-1055(2007).
注:本文節(jié)選自本人博士畢業(yè)論文前言部分。