合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 槐糖脂的屬性:脂肪酸底物和混合比例的影響——材料和方法
> 一文了解帶銹涂裝涂料類型、作用及用途
> 馬來酰蓖麻油酸聚乙二醇酯的表面張力、等物化性能測定(一)
> 表面張力尺度效應(yīng)對微納米器械的制造有指導(dǎo)意義
> 表面張力估算法測定29種常見低芳淺色礦物油的溶解度參數(shù)——實驗部分
> 什么是酒的掛杯現(xiàn)象?馬蘭戈尼效應(yīng)
> 絲素蛋白作為表面活性劑實現(xiàn)納米級設(shè)備的水基加工
> 藥物制劑中常用的非離子型表面活性劑
> 低表面張力、減縮型聚羧酸減水劑制備步驟
> 干細(xì)胞誘導(dǎo)的人小腸上皮模型用于藥物吸收的體外研究
推薦新聞Info
-
> 辛酸異戊酯替代白油制備壓裂液用增稠劑可行性研究
> 芬蘭Kibron表面張力儀精準(zhǔn)測量不同微米尺度下異辛烷的表面張力
> 磁場強(qiáng)度和磁化時長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(三)
> 磁場強(qiáng)度和磁化時長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(二)
> 磁場強(qiáng)度和磁化時長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(一)
> 表面張力的球泡運(yùn)動的理論解研究
> 改性環(huán)氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(三)
> 改性環(huán)氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(二)
> 改性環(huán)氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(一)
> 超低界面張力復(fù)配表面活性劑用于渤海X油田水驅(qū)后的“挖潛提采”(三)
溫度、截斷半徑、模擬分子數(shù)對水汽液界面特性的影響規(guī)律(二)
來源:河南化工 瀏覽 216 次 發(fā)布時間:2024-11-28
2模擬結(jié)果與討論
2.1溫度對密度分布的影響
在模擬分子數(shù)N=256和截斷半徑rc=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時,模擬得到的密度分布如圖3所示。統(tǒng)計得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d如表2所示。由圖3及表2可見,汽相主體密度和汽液界面厚度隨溫度的提高而增加,而液相主體密度隨溫度的提高而減小。
液相主體密度與汽相主體密度之差(ρL-ρV)與溫度T的關(guān)系如圖4所示??梢姡?、汽相主體密度之差隨溫度的升高而降低;從理論上講,在臨界點(diǎn)處,其差值應(yīng)該趨近于零,這與圖3所示的規(guī)律一致。液、汽相主體密度之差與溫度的關(guān)系可以擬合成式(14)的形式。
式中水臨界溫度Tc=647.3 K,利用表2數(shù)據(jù)對式(14)進(jìn)行擬合,得到參數(shù)ρ0=1545.8 kg/m3,指數(shù)因子x=0.5516。
2.2溫度對界面張力的影響
在模擬分子數(shù)N=256和截斷半徑rc=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時,水汽液界面張力的模擬結(jié)果見表3。
圖5為局部界面張力的分布曲線(500 K)。由圖5可見,汽相主體的局部界面張力基本為零;從汽相主體向液相主體的過渡過程中,界面張力值逐漸增加,在汽液界面區(qū)達(dá)到峰值;在液相主體又在零值附近波動。水汽液界面張力模擬值隨溫度變化規(guī)律如圖6所示。
由圖6可以看出,隨著溫度的提高,界面張力降低,模擬值與實驗值之間的誤差逐漸減小。界面張力與溫度的關(guān)系可以擬合得到方程(15)。
將表3的數(shù)據(jù)對式(15)進(jìn)行擬合,得到的參數(shù)γ0=254.3 mN·m-1,指數(shù)因子k=1.305。
2.3溫度對勢能分布的影響
在模擬分子數(shù)N=256和截斷半徑rc=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時,汽相主體總勢能UV、液相主體總勢能UL及總勢能勢阱深度ΔU的模擬結(jié)果如表4所示。圖7為水分子的勢能分布曲線(500 K),圖8為液相主體區(qū)域的勢能隨溫度的變化趨勢。
圖8液相主體區(qū)域的勢能隨溫度的變化趨勢
前已述及,水的勢能分為L-J勢能和靜電勢能。由圖7可以看出,L-J勢能均為正值,在液相區(qū)形成勢壘,勢壘高度ΔULJ為液相主體L-J勢能與汽相主體L-J勢能之差;靜電勢能均為負(fù)值,在液相區(qū)形成勢阱,勢阱深度ΔUe為汽相主體靜電勢能與液相主體靜電勢能之差;由于靜電勢能起主導(dǎo)作用,總勢能也為負(fù)值,同樣在液相區(qū)形成勢阱,分子之間主要為吸引作用。從圖8可以看出,汽相主體勢能作用不明顯,勢壘高度隨溫度升高而降低,液相主體勢能的勢阱深度隨體系溫度的升高而減小。
2.4模擬分子數(shù)對模擬結(jié)果的影響
在溫度500 K和截斷半徑rc=0.9498 nm的條件下,當(dāng)模擬分子數(shù)N=108、256、500和864時,模擬得到的密度分布見圖9。統(tǒng)計得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d見表5。
圖9水分子數(shù)對密度分布的影響
表5不同水分子數(shù)下界面性質(zhì)的模擬結(jié)果
由表5和圖9可見,隨著模擬分子數(shù)的增加,液相主體密度有所增加,液相主體區(qū)域?qū)挾燃哟?,汽液界面厚度稍有增大,汽相主體密度有所波動。
2.5截斷半徑對模擬結(jié)果的影響
在溫度為500 K和模擬分子數(shù)為864的條件下,當(dāng)截斷半徑rc=0.7915、0.9498、1.2660 nm時,模擬得到的密度分布如圖10所示。統(tǒng)計平均得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d如表6所示。從表6和圖10可以看出,隨著截斷半徑的增加,液相主體密度增大,汽相主體密度減小,汽液界面厚度變化不大。
3結(jié)論
采用SPC模型,對水汽液界面特性的分子動力學(xué)模擬研究結(jié)果表明,隨著溫度的升高,汽相主體密度增加,汽液界面厚度增大,液相主體密度降低,界面張力逐漸減小,液相主體區(qū)域勢能的勢阱深度也逐漸降低。隨著模擬分子數(shù)的增加,液相主體密度增加,汽液界面厚度稍有增大。隨著截斷半徑的增加,液相主體密度增加,汽液界面厚度變化不大。