合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 不同溫度下手性離子液體及二元混合物的密度和表面張力(下)
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(三)
> 不同界面張力-潤(rùn)濕性組合的滲吸液體系對(duì)于化學(xué)滲吸效果的影響規(guī)律
> 基于黑磷納米片及有機(jī)小分子組裝單元的有序LB膜制備與性能研究
> 木材與膠表界面潤(rùn)濕特性表征與影響因素研究
> 水的表面張力是多少?影響因素有哪些?
> 誰(shuí)的表面張力更大?
> 不同質(zhì)量分?jǐn)?shù)的EMI溶液的表面張力測(cè)定【實(shí)驗(yàn)下】
> ?涂料施工后出現(xiàn)縮孔等缺陷,居然與表面張力有關(guān)
> 無(wú)機(jī)粒子對(duì)TPAE界面張力、發(fā)泡、抗收縮行為的影響(一)
推薦新聞Info
-
> 不動(dòng)桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(三)
> 不動(dòng)桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(二)
> 不動(dòng)桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(一)
> 阿洛酮糖可提高塔塔粉溶液的表面張力,打發(fā)的蛋清更白泡沫更穩(wěn)定
> 聚氧乙烯鏈長(zhǎng)度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(四)
> 聚氧乙烯鏈長(zhǎng)度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(三)
> 聚氧乙烯鏈長(zhǎng)度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(二)
> 聚氧乙烯鏈長(zhǎng)度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(一)
> 飽和腰果酚聚氧乙烯醚磺酸鹽動(dòng)態(tài)界面張力測(cè)定【實(shí)驗(yàn)步驟及結(jié)果】
> 最大拉桿法的基本原理、實(shí)驗(yàn)步驟、影響因素及其在測(cè)定溶液表面張力中的應(yīng)用
溫度、鹽對(duì)辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(一)
來(lái)源:化工學(xué)報(bào) 瀏覽 251 次 發(fā)布時(shí)間:2024-11-07
摘要:采用分子動(dòng)力學(xué)模擬(MD)的方法在分子層面上考察辛基酚聚氧乙烯醚磺酸鹽(OPES)在油-水界面的界面行為。模擬結(jié)果表明:辛基酚聚氧乙烯醚磺酸鹽可以大幅降低油-水界面的界面張力,在OPES濃度達(dá)到飽和濃度時(shí),系統(tǒng)界面張力僅為3.85 mN·m-1;OPES中磺酸基是主要親水基團(tuán),具有良好的親水性;溫度在318~373 K時(shí),界面張力由24.63 mN·m-1下降到17.43 mN·m-1,這說(shuō)明OPES具有良好的抗高溫性能;當(dāng)Na+濃度在1%~5%的環(huán)境下OPES性質(zhì)穩(wěn)定,界面張力僅有4.47 mN·m-1的小幅增加,因此OPES具有良好的耐鹽性,并且其對(duì)Na+的耐鹽性能好于對(duì)Ca2+的耐鹽性。
在三次采油中,為提高原油采收率,經(jīng)常利用表面活性劑來(lái)降低油水界面張力,目前國(guó)內(nèi)部分油田綜合含水量已高達(dá)90%,單獨(dú)的陰離子、非離子型表面活性劑已經(jīng)不能滿足當(dāng)前的采油要求,陰非離子型表面活性劑作為一種同時(shí)有非離子及陰離子表面活性劑優(yōu)點(diǎn)的兩性表面活性劑對(duì)于目前日益嚴(yán)苛的采油環(huán)境的適應(yīng)性更強(qiáng)。本文研究的辛基酚聚氧乙烯醚磺酸鹽(OPES)是一種具有優(yōu)良的乳化、耐溫、耐鹽性能的陰非兩性表面活性劑,它已經(jīng)作為分散劑、潤(rùn)濕劑、乳化劑、洗滌劑等被廣泛地應(yīng)用于石油、日化、紡織等領(lǐng)域。
分子動(dòng)力學(xué)模擬主要是利用牛頓力學(xué)來(lái)模擬分子的運(yùn)動(dòng),從不同狀態(tài)下的體系抽取樣本進(jìn)行構(gòu)型積分并以此為基礎(chǔ)計(jì)算體系的熱力學(xué)量等宏觀性質(zhì)。從20世紀(jì)90年代后期,人們開(kāi)始利用計(jì)算機(jī)模擬研究表面活性劑的性能,它可以將真實(shí)環(huán)境中的實(shí)驗(yàn)現(xiàn)象在分子層面進(jìn)行解釋。對(duì)液液界面的研究作為分子動(dòng)力學(xué)模擬的重要研究方向之一近年來(lái)受到廣泛的關(guān)注和報(bào)道,如Jang等利用MD模擬了苯磺酸基在不同位置時(shí)十六烷基苯磺酸鹽的界面張力等界面性能。Wardle等考察了表面活性劑對(duì)無(wú)機(jī)鹽、水和正己醇構(gòu)成的混合物中鈉離子遷移的影響。陳貽建等用MD模擬方法對(duì)表面活性劑在氣-液、固-液、液-液界面的自組裝現(xiàn)象進(jìn)行深刻解釋分析。因此利用MD方法研究表面活性劑的界面張力、抗溫、抗鹽等界面性能具有重要意義。國(guó)內(nèi)對(duì)于應(yīng)用分子動(dòng)力學(xué)模擬來(lái)研究表面活性劑性能的起步較晚,特別是對(duì)具有耐溫、耐鹽性能的表面活性劑的研究較少,本文通過(guò)分子動(dòng)力學(xué)模擬來(lái)研究辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為、抗溫、抗鹽性能,可為實(shí)際實(shí)驗(yàn)提供較為準(zhǔn)確的指導(dǎo)。
1、分子動(dòng)力學(xué)模擬的模型選擇與模擬方法
20世紀(jì)80年代以來(lái),人們相繼研發(fā)出可以適合不同環(huán)境的力場(chǎng),如GROMOS、OPLS、AMBER、CHARMM等。本文選擇Gromacs中GROMOS53a6力場(chǎng),以辛基酚聚氧乙烯醚磺酸鹽為研究對(duì)象進(jìn)行模型構(gòu)建。
分子的物理化學(xué)性質(zhì)由其分子結(jié)構(gòu)決定,因此合理的分子結(jié)構(gòu)以及準(zhǔn)確的原子電荷是模擬準(zhǔn)確性的基礎(chǔ)保證。首先要對(duì)模擬對(duì)象用GAMESS(US)進(jìn)行結(jié)構(gòu)優(yōu)化,然后利用Kollman-Singh方法計(jì)算電荷,另外如果分子內(nèi)存在對(duì)稱結(jié)構(gòu)還需進(jìn)行電荷平均化來(lái)保證電荷分配的合理性。由于本文采用聯(lián)合原子力場(chǎng),因此還要去除sp3雜化。圖1為優(yōu)化后的OPES分子結(jié)構(gòu)以及電荷分布,圖中綠色小球?yàn)樘荚樱咨∏驗(yàn)闅湓?,紅色小球?yàn)檠踉樱S色小球?yàn)榱蛟印?
在進(jìn)行分子動(dòng)力學(xué)模擬之前構(gòu)建出合理的力場(chǎng)是極為重要的工作。本文通過(guò)Autom-ated Topology Builder(ATB)and repository生成的GROMOS系列力場(chǎng)參數(shù),利用現(xiàn)有的數(shù)據(jù)庫(kù)以及量子化學(xué)進(jìn)行計(jì)算,同時(shí)它可以充分考慮到分子中的對(duì)稱結(jié)構(gòu),使其反映出的分子性質(zhì)及參數(shù)更為精確。但ATB只能處理原子數(shù)小于40的分子,對(duì)于分子數(shù)大于40的分子結(jié)構(gòu)需進(jìn)行拆分。在獲取準(zhǔn)確的電荷及鍵參數(shù)之后利用packmol程序定向排列分子將其堆砌成立方體結(jié)構(gòu)。此外,本文選取的油-水界面需使表面活性劑平均分布在水相兩側(cè),親水基靠近水相,疏水基靠向油相。圖2為初始狀態(tài)下體系截圖,其中中間紅色部分為水分子,左右兩側(cè)藍(lán)色部分為癸烷分子,油水中間即OPES分子。
圖1辛基酚聚氧乙烯醚磺酸鹽的分子結(jié)構(gòu)以及電荷分布
本文中所有體系所堆砌的盒子均為5 nm×5 nm×17.5 nm長(zhǎng)方體,并在x、y、z方向選擇周期性邊界條件。系綜選擇NPT(等粒子等溫等壓系綜),初始?jí)毫?.01325×105Pa,水模型使用SPC(simple point charge),溫度采用Nose-Hoover熱浴法,壓力采用Parrinello-Rahman壓浴法,由于模擬過(guò)程中系統(tǒng)為等壓變化所以本文模擬的所有系統(tǒng)最終壓力值均在1.0081×105~1.0178×105Pa之間。在體系能量最小化后,先進(jìn)行100 ps的NVT模擬,使體系升溫到300K并在此溫度下產(chǎn)生初速度,再進(jìn)行1 ns的NPT模擬使體系密度達(dá)到合理狀態(tài),再進(jìn)行12 ns的NPT模擬,控溫及控壓的弛豫時(shí)間為0.5、4.0 ps,積分步長(zhǎng)為2 fs,在模擬過(guò)程中添加適當(dāng)?shù)年庩?yáng)離子保持體系為電中性。
圖2初始狀態(tài)下體系截圖