合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 溫度、鹽對辛基酚聚氧乙烯醚磺酸鹽的油-水界面行為的影響(二)
> 定性分析聚合物界面張力與系統(tǒng)黏度比之間的關(guān)系——數(shù)值模擬、實(shí)驗(yàn)研究結(jié)果
> 各種測量ILs汽化焓對比:表面張力法、熱重法、簡單相加法、 基團(tuán)貢獻(xiàn)法……(二)
> 陶瓷墨水的組成、制備及性能特點(diǎn)
> 強(qiáng)紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(四)
> 調(diào)控NMVQ相表面張力對EPDM/NMVQ共混膠性能的影響
> 應(yīng)用熒光顯微鏡研究了蛋白質(zhì)在氣-水界面的組裝——材料和方法
> 咪唑類離子液體對不同煤塵潤濕性能的影響規(guī)律(下)
> 低滲透油藏表面活性劑降壓增注效果影響因素
> 常用溶劑的極性、密度、沸點(diǎn)、毒性等性質(zhì)總結(jié)
推薦新聞Info
-
> 活性低聚表面活性劑促進(jìn)水滴在疏水表面的鋪展
> 表面活性劑性能形成、HLB值計(jì)算、關(guān)鍵作用及其應(yīng)用
> 鋰電池隔膜粘接劑組合物稀釋液表面張力測試及影響
> 辛酸異戊酯替代白油制備壓裂液用增稠劑可行性研究
> 芬蘭Kibron表面張力儀精準(zhǔn)測量不同微米尺度下異辛烷的表面張力
> 磁場強(qiáng)度和磁化時(shí)長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(三)
> 磁場強(qiáng)度和磁化時(shí)長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(二)
> 磁場強(qiáng)度和磁化時(shí)長對除草劑溶液表面張力、噴霧霧滴粒徑的影響(一)
> 表面張力的球泡運(yùn)動(dòng)的理論解研究
> 改性環(huán)氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(三)
表面張力儀應(yīng)用案例:芳綸纖維復(fù)合材料浸潤性測量原理與步驟
來源:中國電力科學(xué)研究院有限公司 國網(wǎng)福建省電力有限公司電力科學(xué)研究院 瀏覽 371 次 發(fā)布時(shí)間:2024-07-15
芳綸復(fù)合材料被譽(yù)為全球材料皇冠上的鉆石,位列三大高性能材料之一。其產(chǎn)業(yè)化進(jìn)程對我國國防建設(shè)、主導(dǎo)型工業(yè)項(xiàng)目(如大型飛機(jī)、高速列車、造船、電力、電子信息、建材等)具有至關(guān)重要的影響。在軍工領(lǐng)域、芳綸復(fù)合材料大量應(yīng)用于飛機(jī)、艦船、潛艇、坦克、導(dǎo)彈、雷達(dá)的高性能結(jié)構(gòu)件和特種電子設(shè)備。在民用領(lǐng)域,主要用于航天、航空、高速列車及汽車的高性能結(jié)構(gòu)件、軌道交通、核電、水電和電網(wǎng)工程中大型電機(jī)、變壓器高端絕緣材料,建筑用高性能隔熱阻燃材料,高端電路板和印刷、醫(yī)用材料等。
由于芳綸纖維表面官能團(tuán)少,與基體粘合差,因此在制備芳綸增強(qiáng)型復(fù)合材料時(shí)一般需要對芳綸纖維進(jìn)行表面處理,來增加芳綸纖維界面極性,改善芳綸纖維濕潤性。在材料設(shè)計(jì)和性能評估中,首先應(yīng)對樹脂與纖維間浸潤性進(jìn)行評價(jià),進(jìn)而提高樹脂與纖維的相容性。
芳綸纖維增強(qiáng)型復(fù)合材料的浸潤性一般通過芳綸纖維的表面接觸角來表征。目前常用的測量芳綸纖維接觸角的方法為動(dòng)態(tài)接觸角測量法。但這種方法要求在測試中,纖維與液面始終保持90°角,垂直地刺破液面。因此僅適用于玻璃纖維、碳纖維等剛性纖維。而芳綸纖維質(zhì)地較軟,較難刺破液體表面,很難與液面保持垂直,致使測量誤差較大,結(jié)果并不準(zhǔn)確。
另一種纖維接觸角的測量法是用視頻光學(xué)接觸角測量儀直接觀察液滴包裹纖維或停留在纖維表面的圖像,在圖像中讀取靜態(tài)接觸角。但這種方法需要將皮升級的液滴噴射在直徑為微米級的纖維表面,設(shè)備成本高,操作難度較大。且由于液滴的重力作用和纖維的吸濕性,液滴難以在纖維上保持固定形態(tài),測量結(jié)果有一定誤差。
測量原理
在垂直條件下,液體在毛細(xì)管中上升的驅(qū)動(dòng)力為液體表面張力引起的附加壓力,此外還收到黏滯阻力和液柱重力的影響,阻止液體滲透。Washburn方程在推導(dǎo)過程中,根據(jù)Poiseuille公式處理了黏度影響以后,得到如下關(guān)系式:
式中:l為液體在毛細(xì)管中移動(dòng)的距離;r為毛細(xì)管半徑;t為移動(dòng)時(shí)間;∑p為液體移動(dòng)的驅(qū)動(dòng)壓力及附加壓力與重力之差;η為液體的黏度;ε為滑動(dòng)摩擦系數(shù)。
由于芳綸纖維直徑只有幾十微米,毛細(xì)管半徑r很小,毛細(xì)附加壓力遠(yuǎn)大于液柱的重力,所以可以忽略重力的作用,液體流動(dòng),認(rèn)為摩擦系數(shù)ε=0。代入附加壓力的Young-Laplace方程并積分,得到Washburn方程式:
式中:h為液體上升高度;C為常數(shù);r為毛細(xì)管半徑;σ為液體表面張力;η為液體的黏度;θ為固體對液體的表面接觸角;t為移動(dòng)時(shí)間。
當(dāng)芳綸纖維均勻地填入樣品柱,取向相同,全部近似平行于測試管管壁時(shí),得到一個(gè)可以看作由一束平行毛細(xì)管組成的樣品柱,與Washburn動(dòng)態(tài)壓力法中假設(shè)的前提條件相同,因此Washburn動(dòng)態(tài)壓力法適用于這種裝填條件下芳綸纖維接觸角的測量。
從而能夠有效地測試芳綸纖維接觸角,并給出了技術(shù)原理。試驗(yàn)操作簡單、重復(fù)性好、測量效果較佳。本方法能夠極大地提高對芳綸纖維增強(qiáng)型復(fù)合材料浸潤性的評價(jià)能力。解決了現(xiàn)有技術(shù)中試驗(yàn)操作困難、重復(fù)性差、測量誤差大的問題。
可選地,獲取兩組質(zhì)量相同,高度及堆積密度相同的芳綸短絲樣品柱之前,包括:
將芳綸纖維測試樣品統(tǒng)一裁剪成約為測試管長度2/3的芳綸短絲樣品;
將所述芳綸短絲樣品、所述測試管及加工好的封口材料置于烘箱中,在105℃~110℃干燥2h后置于干燥器中冷卻保存。
可選地,獲取兩組質(zhì)量相同,高度及堆積密度相同的芳綸短絲樣品柱,包括:
將兩組預(yù)定重量的芳綸短絲樣品密實(shí)地裝入下端用濾紙封閉的測試管內(nèi),使所述芳綸短絲樣品取向相同,且平行于所述測試管管壁,敲擊管壁,振蕩預(yù)定時(shí)間,使芳綸短絲樣品壓實(shí),記錄高度位置,稱重,計(jì)算堆積密度。
從而能夠有效地測試芳綸纖維接觸角,并給出了技術(shù)原理。試驗(yàn)操作簡單、重復(fù)性好、測量效果較佳。本方法能夠極大地提高對芳綸纖維增強(qiáng)型復(fù)合材料浸潤性的評價(jià)能力。解決了現(xiàn)有技術(shù)中試驗(yàn)操作困難、重復(fù)性差、測量誤差大的問題。
測量步驟
步驟一:將芳綸纖維測試樣品統(tǒng)一裁剪成約為樣品管長度2/3的短絲。
步驟二:將測試樣品、樣品管及加工好的封口材料置于烘箱中,在105℃~110℃干燥2h后置于干燥器中冷卻保存。
步驟三:將1~2g測試樣品密實(shí)地裝入下端用濾紙封閉的測試管內(nèi),盡量使所有芳綸短絲取向相同,且平行于測試管管壁。敲擊管壁,振蕩3min,使樣品盡量壓實(shí),記錄高度位置,稱重,計(jì)算堆積密度。
步驟四:稱取相同質(zhì)量的芳綸短絲樣品,用同樣的方法填充一組高度及堆積密度相同的樣品柱。
步驟五:采用正己烷作為完全潤濕體,將裝有一組樣品柱的測量管垂直掛在表面張力儀的天平掛鉤上,使下端與正己烷液面距離約2mm,設(shè)定吸附時(shí)間200s,運(yùn)行表面張力儀的washburn程序,進(jìn)行不少于三次的平行樣重復(fù)測量,計(jì)算樣品柱的參數(shù)β值。
步驟六:將表面張力儀中的液體更換為待測液體,將另一組樣品柱的測量管垂直掛在表面張力儀的天平掛鉤上,使下端與待測液面距離約2mm,設(shè)定吸附時(shí)間200s,運(yùn)行表面張力儀的washburn程序,進(jìn)行不少于三次的平行樣重復(fù)測量,根據(jù)已測得的參數(shù)β值,計(jì)算芳綸纖維與待測液體的接觸角θ。
實(shí)施效果
取兩組樣品做對照試驗(yàn)。其中對照組樣品為Kevlar 49芳綸纖維,試驗(yàn)組樣品為經(jīng)過等離子體表面處理后的同型號Kevlar纖維。等離子體放電方法為常壓空氣等離子體DBD放電,等離子體功率為0.7kW,處理時(shí)間為24s。
測量方法為上述的步驟一至步驟六。測試儀器為Sigma 701表面張力儀。完全潤濕體為正己烷,待測液體為水。
測量結(jié)果如下表所示,測量結(jié)果為三次平行樣的平均值??梢娊?jīng)等離子體表面處理后,芳綸纖維與水的表面接觸角降低16°,潤濕性提高。